
Air to Ground Maze Solver

Hamza Nawaz, Jerrod Rout, Nate Jackson, Will

Isidort

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida

Abstract — Using a quadcopter with an attached camera,
a video stream will be sent to a processing hub for image

processing which will use maze a solving algorithm to
generate a list of commands that will be wirelessly
transmitted to a ground vehicle situated in front of a

reconfigurable maze. The ground vehicle will use these
commands in order to navigate through the maze by using
embedded software on an Atmega328p chip to interpret those

command and to also avoid collision with the maze walls.

I. INTRODUCTION

With the advent and subsequent popularity growth of

UAVs (unmanned air vehicles) and autonomous vehicles,

we have begun to see their use and functionality expand

and diversify in both civilian and military applications.

Piggybacking on this technology boom, we have decided

to explore ways in which UAVs and wheeled robots might

be implemented to work in concert in a semi-autonomous,

Internet of Things type of application in an effort to aid

ground personnel in high-risk scenarios. Military

departments and public safety organizations with Search

& Rescue or Search & Destroy type needs could benefit

from the added efficiency and reduced manpower

facilitated by such technology.

For our project, we decided to incorporate aspects of

robotics, communications, computer vision, and UAV

technology by designing a ground vehicle that is capable

of navigating a maze based on images taken from a

quadcopter positioned above. This will be done by using

computer vision techniques to generate a binary image

that can be solved through algorithms such as Breadth-

First Search and A*. Once a solution is obtained, it will be

translated into navigational cues that can be sent to the

ground vehicle. The ground vehicle will interpret these

commands by using a pre-programmed MCU and onboard

sensors such as ultrasonics and rotary encoders. It will

continue to traverse the maze until it locates an object

placed within (such as a tennis ball) and then exit. The

maze itself will be constructed to have a braid-type layout;

this will add another dimension to the project by requiring

not only a solution to the maze to be obtained but also for

the computed path to be the shortest.

This project is a culmination of our research into the

various components and concepts needed to realize this

design. Hardware will be constructed based on several

aspects such as, component cost, power consumption,

transmission rate, effective range, resolution, and

efficiency. Likewise, algorithms and techniques will be

chosen based on ease of implementation, effectiveness,

and computation time. A PCB will be designed for the

ground vehicle that allows the selected hardware to

communicate with the programmed MCU. Once the PCB

has been assembled and programs have been written for

image processing, maze solving, and navigation, a

prototype of the system will be built.

II. SYSTEM COMPONENTS

There are several different overall system components

that will be involved to get our ground vehicle through the

maze successfully including both hardware (ground

vehicle design, quadcopter, wireless communication

system, wireless video transmission) and software (image

processing, maze solving, and embedded programming).

Each system component in the flow relies on the previous

component to operate successfully, so each component is

integral to the overall design, no matter how complex or

simple it may be. An overall block diagram of the system

can be seen below in figure 1.

Camera sends video stream
to Base

Base solves maze and creates
commands for ground vehicle

Base sends commands
through XBee module

Xbee module on ground
vehicle receives commands

Microcontroller interprets
commands

Ground Vehicle goes through
maze

Figure 1 Overall Design Flow

A. Quadcopter & Video Transmission

The first component in the flow of the overall design is

the quadcopter and camera. We chose the DIY Quad from

3DRobotics mainly because it was generously provided to

the group by Dr. Richie. Attached to the quadcopter will

be a camera that will stream video to a computer which

has a receiver attached to it. In order for the video stream

to be processed correctly in software, a high quality

camera is required, so a GoPro Hero3 camera which is

capable of transmitting live standard video was purchased

which also has a built-in video transmitter and battery,

which also saves on cost and weight, because we want the

quadcopter to be as light as possible.

B. Ground Vehicle

The ground vehicle we chose was the Pirate 4WD

Mobile Platform, which was also generously given to us

by Dr. Richie. This was an optimal choice because the

platform was designed to mate with Arduino development

boards and has locations to put onboard sensors which

allowed us to create a working prototype. The ground

vehicle has 4 DC motors, which allows us to have

accurate in-place turning, and has a speed of 90cm/s. This

platform is also small enough so a reasonably complex

maze can be built without having to worry about fitting it

to the size of our ground vehicle.

C. Microcontroller

After researching extensively on which microcontroller

would be best suited for our purposes, we decided to go to

with the Atmega328p. We chose this microcontroller

because it has more than enough digital I/O and analog

I/O, and also has 32kB flash memory with read-while-

write capabilities. It also has an operating frequency of

20MHz which will allow us to have fast processing time

which is needed for our robotics application. Another

reason we chose this is has many different open source

libraries and support for robotics. It uses the Arduino

environment which uses C code, which makes it easier to

code as the group is familiar with it. And lastly the cost of

these microcontrollers are very low.

D. PeripheralComponents

There are peripheral components and sensors that must

be added to our ground vehicle if it is to get through the

maze successfully. We must attach ultrasonic sonic

sensors

to our ground vehicle for collision detection, and add

wheel encoders to accurately measure how far the ground

vehicle has traveled. We chose the HC-SR04 Distance

Sensor due to its supported library in the Arduino

environment and its accuracy of .3cm, and its more than

enough of range of 400cm. For our wheel encoders, the

wheel encoder kit from Sparkfun was purchased. After

testing these encoders we discovered they had 8 degrees of

freedom, but that was accurate enough for our design

specifications.

E. Wireless Communications

The wireless communications between the computer

that solves the maze and generates commands (in a form

of a string), and to the ground vehicle is a very crucial part

of the design. It was decided that best solution to

effectively send these commands was to use two XBee

modules (using ZigBee protocol), one connected to the

computer, and one connected to the microcontroller to the

ground vehicle. The XBee modules were chosen for their

overall low power consumption, throughput capacity, long

range, and relatively small size. A note should be made

that a USB adapter is required to use the XBee module

with a computer.

III. HARDWARE DESIGN AND IMPLEMENTATION

The quadcopter is the first part of the design that will

operate. In order to safely fly the quadcopter we needed to

incorporate a gyroscope, accelerometer, compass, and

GPS to the flight controller. We will be giving the

quadcopter a pre-programmed mission using the provided

Mission Planner software so there won’t be any need to

manually fly the quadcopter once we start the

demonstration. Safety is also a factor we have to consider,

so we implemented a geofence so if the quadcopter goes

out of range, it will safely land instead of continuously

flying. We also needed a flight time of at least 30 minutes

so we decided to use a 11.7V 5100 mA/h battery to power

the quadcopter.

The overall system flow of the design can be seen in

figure 1. It can be seen that overall flow is linear, and each

process requires the results of the previous process in

order to operate correctly, which does pose risk in the

sense of if one step fails, it can cause failure in the entire

system.Once the commands reaches our ground vehicle,

the microcontroller on the ground vehicle will use the

embedded software to interpret these commands. The

three main components attached to the MCU are the

ultrasonics sesnsors, wheel encoders, and the XBee

Module. The block diagram below in figure 2 represents

how the microcontroller communicates with the overall

system.

From the block diagram you can see that XBee module

is receiving and also transmitting data back to the

computer. This data being transmitted is the ultrasonic

sensor data which sends the distance to the left, right, and

front walls in centimeters, and also the wheel encoder data

so we can see on our side that all peripheral components

are operating correctly. There are four DC motors on the

ground vehicle, but we have tied the left two motors’

enable and control pins together so they can operate

simultaneously, and also to save on digital I/O pins. We

did this for the right two DC motors as well, so one line of

code would be able to operate either side of the vehicle.

We attached a wheel encoder to the two front DC motors

of the ground vehicle, but we realized we actually only

needed one encoder, because no matter the type of

movement (forward, left, right), every wheel will be

turning, so we were able to calibrate the turns off just one

wheel encoder.

The embedded programming was one the most

challenging parts of the overall design mainly due to the

constant tweaking and changing required when

prototyping and calibrating.With a preset size of the maze

in mind, we are able to send commands to the ground

vehicle in the form of letters and numbers. If “F, 20” is

sent, where the first letter is the command, and second is a

number in the unit of pixels. The “20” is converted to a

distance in cm and the robot interprets this as “Go

Forward, X cm”. Using this information we program the

wheel encoders to travel this distance because we know

the distance of one revolution of a wheel.

Using libraries for the ultrasonic sensors, we’re able to

convert the pings we receive into a distance to

centimeters. In order to effectively use the ultrasonic

sensors in the code, we have to constantly check the

distance while the ground vehicle is moving, instead of

checking the distance after movement. In order achieve

this we implemented interrupts into our embedded code

which is always running in the background. It uses the

encoder pin input which always reads a HIGH or LOW

depending on the eight possible states of the wheel

encoder. Whenever there is a state change, the interrupt

code will be activated and will use the ultrasonic sensors

to determine if the robot is too close to the walls. If it is, it

will correct itself by having one side of the ground vehicle

move faster, and the other one slower in order to get itself

on a straight path again. If the robot is at safe distance

from the wall, the code will go back to where it left off

and continue to run. Below in figure 3 you can see a block

diagram of the embedded programming flow.

Figure 3 Embedded Programming Diagram

IV. SOFTWARE DESIGN

 We will identify the maze in the image sent by the

camera on the quadcopter and solve it through the use of

software. The two fields that our project incorporates the

most are image processing and graph theory.

A. Image Processing

 A substantial part of this project involves analyzing and

manipulating images. This will be done with the

implementation of the OpenCV image processing library.

We will use the following techniques in order to correct

distortion, locate the maze, and prepare the image for

binarization.

 1) Camera Calibration: Prior to being used to detect the

maze, the original camera was calibrated to remove

distortion by using a chessboard image to develop a

camera matrix. However, a higher quality camera (GoPro

Hero3) was purchased for the final demo as it gives much

less distortion when in video mode. Minimizing distortion

is necessary because its presence could reduce the

accuracy of the solution by warping the maze walls.

 2) Color Thresholding: The boundaries of the maze

were found by thresholding for the color blue and

analyzing the resulting contours. The largest blue region

(contour) is assumed to be the outline of the maze and a

bounding box is drawn. The same technique is used to

locate the start location (robot position) and goal in the

maze. These pixel coordinates are stored for later use.

 3) Maze Extraction: The bounding box outlining the

maze considers the rotation of the maze and minimizes the

area enclosed. This is done to prevent additional

background artifacts from appearing in the extracted

image. Our program is robust to rotation and will rotate

the maze such that it has either a horizontal or vertical

orientation. Once positioned correctly, the maze is

cropped and extracted.

4) Binarization: Once the maze image has been isolated,

binary thresholding is applied to create a black and white

image. The black pixels will represent the walls of the

maze and white pixels will represent the floor of the maze.

The image is also eroded to enhance the accuracy of the

solution.

B. Maze Solving

Once a binary image of the maze has been created through

image processing techniques, it will be interpreted by

utilizing the NetworkX library to construct a graph of

interconnecting nodes representing the paths of the maze.

Next, an algorithm will iterate through the maze and

produce a solution which will be translated and sent to the

robot as movement commands. The nature of the BFS

algorithm will enable the robot to take the optimal path.

The following steps were performed in order to

accomplish this.

1) Interpreting Pixel Data: The values of every pixel in

the binary image are stored in the form of an iterable list.

The list of pixel values is iterated through and a text file is

created which represents the layout of the maze. In the text

file a pixel value of zero (black, wall) is represented by a

‘1’, a pixel value of 255 (white, floor) is represented by a

‘0’, the start location is represented by an ‘S’, and the end

location is represented by an ‘E’. Both the start and end

locations are padded with zeros so that the start and goal

node are accessible.The created text file is then processed

further to reduce the likelihood of false turns (turn

commands generated by the meandering nature of the BFS

Figure 4 Camera image is thresholded for the colors blue, red,

and green to identify the bounds of the maze, robot position, and

the goal, respectfully

Figure 5 Binary maze which will be converted into a text file and

solved

algorithm that are not found in the physical maze layout)

being sent to the robot once the solution is obtained.

2) Determining Maze Path Width: A threshold value

which differentiates vertical paths from horizontal paths is

found by reading the text file created above and counting

the number of zeros between two ones. These values are

stored in a list and can then be interpreted to find the

average path width which will be used to path threshold in

when finding Hough lines in the image.

3) Finding Hough Lines: The Hough transform is used

to condense the maze paths to one pixel in width. This is

accomplished by determining if a detected Hough line is

actually a wall in the maze by subtracting neighboring

Hough lines of the same orientation and comparing the

result to a predetermined path threshold. If the distance

between two Hough lines is greater than the path threshold

the lines are assumed to form a path and a line is drawn in

the middle of them. Once the paths of the maze have been

found, the mid-lines are overlaid on the original binary

image and this image is subtracted from a solid black

image of the same size. The resulting image is a black and

white one pixel width line representation of the maze.

4) Connecting Nodes and Solving the Maze: The nodes

of the maze will be created and connected by analyzing

the text file and interpreting the characters ‘S’, ‘E’, ‘1’,

and ‘0’. When the ‘S’ character is found in the text file the

root node is created. The root node ‘S’ is connected to

other nodes by comparing the characters above, below, to

the right, and to the left of it. If either of these characters is

a ‘0’ the node will be added to a graph and connected. All

of the floor nodes (‘0’) and the goal node (‘E’) will be

linked together in this manner. Once all nodes are

connected a BFS algorithm will run and the shortest path

connecting ‘S’ and ‘E’ nodes will be found. After

completion, backtracking will be used to obtain the

coordinates of every node in the path.

5)Translating the Solution and Sending Commands:

When the solution is obtained by backtracking it is

received as a list of nodes named by their coordinates.

Their positions relative to one another were translated into

cardinal directions and these were then interpreted to

generate the forward (‘F’), right (‘R’), and left (‘L’)

commands. These commands were then filtered according

to the size of the maze and distance the robot travels in

one revolution. The resulting string was then sent to the

robot through serial communications.

V. MAZE LAYOUT

The maze is the final part of the project that needs to be

addressed. It will be built using black foam boards for the

walls and for the floor we’ll be using a white surface so

we can easily identify the maze in software. In our design,

we are planning to use a modifiable maze and also there

should be more than one way to reach to the end of the

maze so we can choose the most optimal path. All

pathways’ dimensions will have same size based on the

ground vehicle’s specific dimension. For instance, the

corridors will be reasonably twice as big as the ground

vehicle to prevent the vehicle from getting stuck while

navigating through the maze. The angle for turning left or

right is to be 90 degrees. We will also be able to move the

walls so we can test different maze layouts and prove that

the design can work with more than one maze layout.

VII. PCB DESIGN

The main hardware design component in this project

came with the implementation of the DFRobot Pirate

4WD robot platform and the design and integration of the

PCB used to power it. This is the most important part of

our design as it contains all the circuitry needed for the

operation of the ground vehicle. Creating a PCB is one of

the major requirements for this project provided by the

Accreditation Board for Engineering and Technology, so

learning how to do it properly was crucial. The ground

vehicle PCB is a custom, 2-layer microcontroller that was

designed to handle minimal processing, with the bulk of

the processing done on the remote processing hub. The

Atmel ATmega328p was chosen as the ground vehicle’s

MCU, given its reliable architecture and its compatibility

with the straightforward, easy-to-use Arduino IDE for

programming. The ATmega328p also had adequate

memory (32KB ISP flash) and clock rate (16MHz,

upgradeable to 20MHz) to allow for sufficiently robust

and responsive operation of the ground vehicle.

Figure 6 Reconfigurable color-coded maze layout

Peripherals operated by the MCU include two H-bridges

to drive the DC motors on the ground vehicle, an XBee

module to talk to the processing hub, and power regulation

circuitry to supply the correct power to all the

components. Below in figure 4 you can see the final

layout of the PCB and see how everything interconnects.

The ultrasonic sensors and wheel encoders were mounted

offboard. The MCU I/O to interface with these sensors

was broken out from the MCU to SIP sockets, mounted at

the periphery of the PCB, to allow for maximum

configurability. We decided to wire the ultrasonic sensors

to the board instead of placing them directly on the board

because they may need to be moved in the future for

optimization, and the wheel encoders are attached to the

DC motors, so they would not be placed onto the final

PCB design (figure below).

In order to ensure that all the circuitry worked before

making and ordering the final design of the PCB, we

prototyped the board out onto a breadboard to finalize and

validate our design before sending it off to the PCB

manufacturer OSH Park.

The ground vehicle has two power supplies: one to

power the microcontroller and all peripherals and one to

power the DC motors. A 9V cell powers the

microcontroller; this is fed into the PCB where it is

stepped down to supply a 5V rail to the MCU and all

peripherals. The Pololu D24V6F5 5V switching regulator

was chosen in order to minimize power consumption.

Serial communication is achieved through the onboard

XBEE module, which requires 3.3V VCC and input to all

pins. To achieve this, a Linear Technology LT1086 linear

regulator was chosen to provide a 3.3V rail for the XBEE

module. The 3.3V rail feeds incestuously off of the 5V

rail, thus a linear regulator was chosen because of their

reliability and also because a 1.7V voltage drop would be

only slightly above the dropout voltage rating of the

LT1086 and therefore power loss would be minimal. The

Tx output the ATmega328 is also 5V; a voltage divider

circuit was chosen to drop this voltage down to 3.3V since

this is not a constant signal (Can be seen in figure 7).

Vertical mounted PTH resistors were chosen to help

dissipate any heat. The power supply for the DC motors is

governed by the H-bridges. We used five 9.5V cells.

Figure 2 PCB Layout

Next we had to design the MCU circuitry and place it in

the board layout. The reset pin is required to be connected

to our Vcc with a 10kΩ resistor. The MCU also requires a

16 MHz crystal oscillator to operate, which is placed on

pins 9 and 10. We use two 22pF capacitors on each pin of

the oscillator connected to ground for decoupling and

tuning. We put two headers on each side of the board so

we can connect our ultrasonic sensors and wheel encoder.

This can all be seen in figure 6 below.

The four DC motors each power a separate wheel of the

ground vehicle. Control of the DC motors by the MCU is

facilitated by two Texas Instruments L293d H-bridge ICs,

each controlling one pair of wheels, both on the same side.

Although two H-bridges can allow for independent control

of up to all four wheels, the control pins of each H-bridge

were tied together to the same output pin of the MCU,

effectively syncing each pair of motors together. This

reduces path deviation, since both motors spin in lockstep

with each other, and also reduces the number of occupied

GPIO pins of the MCU. A larger PCB layout was

implemented, with the H-bridges mounted away from

other components, and copper pours were added to the top

and bottom layers of the PCB to allow for enhanced

heatsinking. Locomotion is achieved through 5V DC input

signals to the enable pins (to control wheelspin direction)

and a 5V PWM signal to the control pin, with wheelspin

speed adjusted by varying the duty cycle.

VIII. CONCLUSION

 Overall this project allowed us to use the concepts and

techniques we have learned in our electrical engineering

program at UCF. It was a challenging and rewards

experience for all four members of the team. We were able

academia or in the industry.

We would like to thank and acknowledge Boeing, Leidos,

Dr. Richie and Dr. Wei, and the UCF Foundation for

providing us with the funding and materials to build the

project. We would also like to thank the professors and

engineers that have agreed to be a part of our review board

committee and took the time to review our project and

evaluate it.

Biography

Hamza Nawaz is currently

a senior at the University of

Central Florida. He is also

currently part of the college

work experience program

working at Lockheed

Martin Missiles and Fire

Control and has accepted a

full time Electrical

Engineering position there.

Jerrod Rout is currently a

senior at the University of

Central Florida. After

graduation he plans to

pursue a career in

Electrical Engineering

within the field of

microelectronics.

William Isidort is currently

a senior at the University of

Central Florida. After

graduation he plans to join

the workforce and later on

pursue a master’s degree in

Electrical Engineering to

further his career path.

Nate Jackson is currently a senior at the University of

Central Florida. After graduation he plans to continue his

education and pursue his master’s degree at UCF in

Electrical Engineering.

REFERENCES

[1]"Mission Planner Support | 3DR | Drone & UAV

Technology", 3DR | Drone & UAV Technology, 2016.

[Online]. Available: https://3dr.com/kb/mission-planner/.

[Accessed: 08- Apr- 2016].

[2]"Arduino - AttachInterrupt", Arduino.cc, 2016.

[Online]. Available:

https://www.arduino.cc/en/Reference/AttachInterrupt.

[Accessed: 08- Apr- 2016].

[3]"Using EAGLE: Board Layout - learn.sparkfun.com",

Learn.sparkfun.com, 2016. [Online]. Available:

https://learn.sparkfun.com/tutorials/using-eagle-board-

layout. [Accessed: 08- Apr- 2016].
[4]"OpenCV-Python Tutorials", OpenCV Dev Team,

 2016. [Online]. Available:
http://docs.opencv.org/3.0-
beta/doc/py_tutorials/py_tutorials.html [Accessed:
08- Apr- 2016].

[5]"Creating a Graph using NetworkX", NetworkX
Developers, 2016. [Online]. Available:
https://networkx.github.io/documentation/latest/tutori
al/index[Accessed: 08- Apr- 2016].

